Single channel evidence for a cytoskeletal defect involving acetylcholine receptors and calcium influx in cultured dystrophic (MDX) myotubes

1996 ◽  
Vol 19 (9) ◽  
pp. 1116-1126 ◽  
Author(s):  
C. George Carlson ◽  
Todd Officer
2004 ◽  
Vol 123 (4) ◽  
pp. 341-356 ◽  
Author(s):  
Sudha Chakrapani ◽  
Timothy D. Bailey ◽  
Anthony Auerbach

We used single-channel recording and model-based kinetic analyses to quantify the effects of mutations in the extracellular domain (ECD) of the α-subunit of mouse muscle–type acetylcholine receptors (AChRs). The crystal structure of an acetylcholine binding protein (AChBP) suggests that the ECD is comprised of a β-sandwich core that is surrounded by loops. Here we focus on loops 2 and 7, which lie at the interface of the AChR extracellular and transmembrane domains. Side chain substitutions in these loops primarily affect channel gating by either decreasing or increasing the gating equilibrium constant. Many of the mutations to the β-core prevent the expression of functional AChRs, but of the mutants that did express almost all had wild-type behavior. Rate-equilibrium free energy relationship analyses reveal the presence of two contiguous, distinct synchronously-gating domains in the α-subunit ECD that move sequentially during the AChR gating reaction. The transmitter-binding site/loop 5 domain moves first (Φ = 0.93) and is followed by the loop 2/loop 7 domain (Φ = 0.80). These movements precede that of the extracellular linker (Φ = 0.69). We hypothesize that AChR gating occurs as the stepwise movements of such domains that link the low-to-high affinity conformational change in the TBS with the low-to-high conductance conformational change in the pore.


1985 ◽  
Vol 224 (1235) ◽  
pp. 183-196 ◽  

The distribution and single channel properties of acetylcholine (ACh) receptors in human myotubes grown in tissue culture have been examined. Radioautography of myotubes labelled with [ 125 I]α-bungarotoxin showed that ACh receptors are distributed uniformly over the myotube surface at a density of 3.9 ± 0.5 receptors per square micrometre. Ac­cumulations of ACh receptors (hot spots) were found rarely. The conductance and kinetics of ACh-activated channels were investi­gated with the patch-clamp technique. Cell-attached membrane patches were used in all experiments. A single channel conductance in the range 40–45 pS was calculated. No sublevels of conductance (substates) of the activated channel were observed. The distribution of channel open-times varied with ACh concentration. With 100 nM ACh, the distribution was best fitted by the sum of two exponentials, whereas with 1 μM ACh a single exponential could be fitted. The mean channel open-time at the myotube resting potential (ca. — 70 mV, 22°C) was 8.2 ms. The distribution of channel closed-times was complex at all concentrations of ACh studied (100 nM to 10 μm). With desensitizing doses of ACh (10 μM), channel openings occurred in obvious bursts; each burst usually appeared as part of a ‘cluster’ of bursts. Both burst duration and mean interval between bursts increased with membrane hyperpolarization. Individual channel open-times and burst durations showed similar voltage dependence (e-fold increase per 80 mV hyperpolarization), whereas both the channel closed-times within a burst and the number of openings per burst were independent of membrane potential.


Biochemistry ◽  
1983 ◽  
Vol 22 (10) ◽  
pp. 2319-2323 ◽  
Author(s):  
Benjamin A. Suarez-Isla ◽  
Kee Wan ◽  
Jon Lindstrom ◽  
Mauricio Montal

1996 ◽  
Vol 76 (6) ◽  
pp. 3609-3616 ◽  
Author(s):  
J. C. Hardwick ◽  
R. L. Parsons

1. Our previous studies demonstrated that protein kinase C (PKC) activity is required for acetylcholine (ACh) sensitivity to recover fully at snake twitch fiber end plates after prolonged exposure to carbachol. In the present studies, we have investigated whether protein phosphatase(s), activated during carbachol exposure, dephosphorylated critical membrane proteins, which required rephosphorylation by PKC to maintain end-plate sensitivity. End-plate sensitivity was assessed from measurements of miniature end-plate currents (MEPCs) and carbachol-activated currents (EPCCARBS). Conductance of ACh-activated channels was determined from patch-clamp recordings of single-channel currents. 2. Pretreatment of snake muscle preparations with the protein kinase inhibitor staurosporine (0.5 microM), followed by a 10-min exposure to 540 microM carbachol, reduced mean MEPC amplitudes to values 30-40% less than those recorded before carbachol exposure. Conversely, at control end plates exposed to carbachol, the mean MEPC amplitude was reduced by only approximately 5% compared with precarbachol values. This staurosporine-induced decrease in ACh sensitivity could be prevented by pretreatment with the protein phosphatase 2B (calcineurin) inhibitor deltamethrin (0.5 microM), whereas okadaic acid (5 microM) and calyculin A (0.5 microM), inhibitors of protein phosphatases 1 and 2A, had no effect. 3. After a 10-min exposure to 540 microM carbachol, EPCCARB amplitudes (produced by local superfusion with 20 microM carbachol) were significantly smaller at staurosporine-treated end plates than at control end plates. In contrast, the EPCCARB amplitude recorded from end plates pretreated with both deltamethrin and staurosporine was not significantly different from that recorded at control end plates. 4. Substitution of 10 mM Mn2+ for external Ca2+ during the exposure to 540 microM carbachol prevented the decrease in MEPC amplitude recovery at staurosporine-treated end plates. These results suggested that the alteration in sensitivity at staurosporine-treated end plates was calcium dependent. 5. At control end plates, a single population of ACh-activated channels (45-50 pS) is observed both before and after a 10-min exposure to 540 microM carbachol. Conversely, at staurosporine-treated end plates, after exposure to carbachol, a second population of small-conductance (25-30 pS) ACh-activated channels is present in addition to the predominant 45- to 50-pS ACh-activated channels. In preparations pretreated with both deltamethrin and staurosporine, after carbachol exposure, there was a significant decrease in the frequency of small-conductance ACh-activated channels. Deltamethrin treatment alone produced no small-conductance channels before or after a 10-min exposure to 540 microM carbachol. Also, no small-conductance ACh-gated channels were recorded at PKC-inhibited end plates after carbachol exposure either with pretreatment with 10 microM cyclosporin A (another inhibitor of calcineurin) or with the substitution of 10 mM Mn2+ for Ca2+ during the 10-min agonist exposure. 6. We propose that during prolonged exposure to the nicotinic agonist carbachol, calcium influx through ACh-gated channels elevates the level of ionized calcium at the inner surface of the post-junctional membrane and that this local rise in intracellular calcium activates the calcium-dependent phosphatase calcineurin. Dephosphorylation of some key membrane protein by calcineurin leads to a decrease in the extent of recovery from desensitization. Under normal conditions, this process is effectively reversed by PKC activity and end-plate sensitivity recovers fully. However, when PKC is inhibited, the extent of recovery of end-plate sensitivity is decreased, and associated with this decrease is the presence of small-conductance ACh-activated channels not normally recorded at snake twitch fiber end plates.


2002 ◽  
Vol 120 (3) ◽  
pp. 369-393 ◽  
Author(s):  
Richard J. Prince ◽  
Richard A. Pennington ◽  
Steven M. Sine

We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.


2016 ◽  
Vol 149 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Shaweta Gupta ◽  
Srirupa Chakraborty ◽  
Ridhima Vij ◽  
Anthony Auerbach

Nicotinic acetylcholine receptors are allosteric proteins that generate membrane currents by isomerizing (“gating”) between resting and active conformations under the influence of neurotransmitters. Here, to explore the mechanisms that link the transmitter-binding sites (TBSs) with the distant gate, we use mutant cycle analyses to measure coupling between residue pairs, phi value analyses to sequence domain rearrangements, and current simulations to reproduce a microsecond shut component (“flip”) apparent in single-channel recordings. Significant interactions between amino acids separated by >15 Å are rare; an exception is between the αM2–M3 linkers and the TBSs that are ∼30 Å apart. Linker residues also make significant, local interactions within and between subunits. Phi value analyses indicate that without agonists, the linker is the first region in the protein to reach the gating transition state. Together, the phi pattern and flip component suggest that a complete, resting↔active allosteric transition involves passage through four brief intermediate states, with brief shut events arising from sojourns in all or a subset. We derive energy landscapes for gating with and without agonists, and propose a structure-based model in which resting→active starts with spontaneous rearrangements of the M2–M3 linkers and TBSs. These conformational changes stabilize a twisted extracellular domain to promote transmembrane helix tilting, gate dilation, and the formation of a “bubble” that collapses to initiate ion conduction. The energy landscapes suggest that twisting is the most energetically unfavorable step in the resting→active conformational change and that the rate-limiting step in the reverse process is bubble formation.


1991 ◽  
Vol 260 (5) ◽  
pp. E772-E779 ◽  
Author(s):  
U. Brauneis ◽  
P. M. Vassilev ◽  
S. J. Quinn ◽  
G. H. Williams ◽  
D. L. Tillotson

Angiotensin II (ANG II) is a principal secretagogue of adrenal zona glomerulosa (ZG) cells. The transduction process includes a depolarization of the plasma membrane and the activation of calcium influx. The ANG II-induced depolarization is associated with an increase in total membrane resistance. To directly address the mechanism underlying these observations, we examined the effect of ANG II on K+ currents of rat, bovine, and human ZG cells, using whole cell patch clamp. Although some differences were seen in the characteristics of K+ currents between species, ANG II consistently blocked outward currents in ZG cells [rat: 47.1 +/- 4.5% (SE), n = 17; bovine: 38.6 +/- 3.3%, n = 21; and human: 13-63%, n = 3]. With the use of the cell-attached mode, single-channel recordings in bovine ZG cells demonstrated K+ channels that were reversibly blocked when ANG II was added to the bath solution. This indicates that the block of K+ channels by ANG II involves a diffusible intracellular messenger rather than a direct receptor-channel interaction. The decreased conductance of K+ can account for the ANG II-induced membrane depolarization.


2000 ◽  
Vol 116 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Claudio Grosman ◽  
Frank N. Salamone ◽  
Steven M. Sine ◽  
Anthony Auerbach

We describe the functional consequences of mutations in the linker between the second and third transmembrane segments (M2–M3L) of muscle acetylcholine receptors at the single-channel level. Hydrophobic mutations (Ile, Cys, and Phe) placed near the middle of the linker of the α subunit (αS269) prolong apparent openings elicited by low concentrations of acetylcholine (ACh), whereas hydrophilic mutations (Asp, Lys, and Gln) are without effect. Because the gating kinetics of the αS269I receptor (a congenital myasthenic syndrome mutant) in the presence of ACh are too fast, choline was used as the agonist. This revealed an ∼92-fold increased gating equilibrium constant, which is consistent with an ∼10-fold decreased EC50 in the presence of ACh. With choline, this mutation accelerates channel opening ∼28-fold, slows channel closing ∼3-fold, but does not affect agonist binding to the closed state. These ratios suggest that, with ACh, αS269I acetylcholine receptors open at a rate of ∼1.4 × 106 s−1 and close at a rate of ∼760 s−1. These gating rate constants, together with the measured duration of apparent openings at low ACh concentrations, further suggest that ACh dissociates from the diliganded open receptor at a rate of ∼140 s−1. Ile mutations at positions flanking αS269 impair, rather than enhance, channel gating. Inserting or deleting one residue from this linker in the α subunit increased and decreased, respectively, the apparent open time approximately twofold. Contrary to the αS269I mutation, Ile mutations at equivalent positions of the β, ε, and δ subunits do not affect apparent open-channel lifetimes. However, in β and ε, shifting the mutation one residue to the NH2-terminal end enhances channel gating. The overall results indicate that this linker is a control element whose hydrophobicity determines channel gating in a position- and subunit-dependent manner. Characterization of the transition state of the gating reaction suggests that during channel opening the M2–M3L of the α subunit moves before the corresponding linkers of the β and ε subunits.


Sign in / Sign up

Export Citation Format

Share Document